初代素数王の備忘録

KA4T6X|X=9(カステラくん)は素数。

【第3期Mathpower杯】2回戦-3 カステラ-ジャッカル

今回は私・カステラとジャッカルさんの対戦を解説いたします。解説の前に簡単に自己紹介いたします。私は素数大富豪に出会ったのは2年前*1、本格的に始めたのはちょうど1年前です。今年1月に開催されたせきゅーん杯で優勝し、「素数王」のタイトルを戴きました。Mathpower杯は今期が初参戦でしたが、2冠が懸かるということで優勝候補のひとりとして数えられていたようです。
対するのはジャッカルさん。残念なことに手元にジャッカルさんの情報がありません。わかるのはMathpower初参戦、1回戦でヒロキさんを破っていることのみ。前期優勝のもりしーさん、前々期優勝のみうらさんが当時は無名のプレーヤーであったように、大会には「ダークホース」が現れるものです。こちらとしては気を抜く理由はありません。
さて、解説ルームでは前の試合*2の余韻が残っております。5^11の合成数出しについて、キグロさん本人が登場して解説。5冪の下4桁にはわかりやすい特徴があるのでそのパターンを覚えればあとは上数桁を個別にみていけばよいとのこと。詳しくは「QK -1213-」第60話を参照。試合の方はじゃんけんによりジャッカルさんの先手で始まります。なおこの試合から素数判定員が変わります。
前の試合までは中立な立場で解説を行ってまいりましたが、今回は私が対戦した試合ということで主に私の視点から、当時考えていた戦略等も交えて解説していきます。

1本目(14:16:48~14:27:11*3 )

初期手札 ジ:(23456889JKX) カ:(A255578TJQK)
ジャッカルさんの絵札はJ,K,Xの3枚。これで3枚出し最大KXJ|X=Kがつくれます。そこで残りの8枚を3枚・5枚に分ければ、たとえば859→KXJ|X=K→86423と組めます。私の初期手札は絵札が4枚とジャッカルさんより多いですが、仮にジャッカルさんが上述のように手札を組んだ場合には対抗する手段がありません。他にA,2,5,Tがあるので「~T=2*5*~A」という形の合成数出しが狙えそうですが2組必要な「~」に入るカードがありません。

1.ジ:2468J
2.カ:D(3)%
ジャッカルさんが1手目に出したのは2468J、5枚出しです。(偶数連番)+(奇数1枚)という形の素数は偶数消費かつ覚えやすいため多くのプレーヤーに記憶されている多枚出しです。ちなみに偶数部分を逆に並べた8642Jも素数です。それを見て私は7を手札右側に寄せます。もしここで親をとろうとすると、現時点で出せる最大素数7KTQJが次の手の有力候補だからです。7KTQJを除くと残りは(A25558)ですがこれでつくれる6枚出しは知りませんでした(降順に並べた85552Aが素数)。ドローしたところ3。やはり残り手札で上がるのは難しいと判断し(これも降順に並べた855532Aが素数)、ここは様子見のパスを選びます。

3.ジ:853
4.カ:D(9)8Q3
5.ジ:KX9|X=Q,P(778)
ジャッカルさんはノータイムで853。私は現時点で出せる3枚出し最大がKTJであることを確認してドロー。引いたのは9。ラマヌジャン革命が揃ったので手札左端に。KTJとA729を除いた手札で出せる素数8Q3を出します。出した直後にジャッカルさんの手札が残り3枚であることに気がつきました。つまりこれは悪手。なぜならジャッカルさんはまだ絵札を1枚しか出していないため、手札に絵札を2~3枚抱えている可能性が高い。ということは8Q3にカウンターして上がる可能性が高い。KTJを出していれば阻止できたかもしれないカウンターを許してしまう恰好となってしまいました。そのときのジャッカルさんの手札は(9KX)、返せる候補はK9X|X=K,KX9|X=T,9XK|X=6などたくさんあります。ジャッカルさんが出したのはKX9|X=Q。これは素数ではありません(13129=19*691)。なお(9,Q,K)はどう並べ替えても素数にできない詰んでるセットです。ジャッカルさんはペナルティで3枚引き、私に手番がまわってきます。
5手目終了時の両者の手札 ジ:(7789KX)(残6枚) カ:(A255579TJK)(残10枚)

6.カ:D(T)57[GC]
私はドローし、Tを引きます。もしここで革命すると残りは(555TTJK)となり途端に手札が弱くなってしまいます。しかもジャッカルさんは9,Xをもっていることがわかっており、しかも直前に3枚引いていることから革命されても返せるカードがある可能性が高そうです。革命は控えたほうがよさそう。そうこうしているうちに制限時間が迫ってきたのでいったん57を出し再び自分の手番にします。

7.カ:D(J)5592J
8.ジ:D(T)%
私は再度ドローします。親でグロタンカットをするとその前後でカードをドローできる機会が得られるのでけっこう便利です*4。まだ5が2枚残っていたのでドローしたばかりのJと合わせて5592Jと出します。55921Xは四つ子素数*5です。ジャッカルさんはドローしてパス。

9.カ:D(4)KTJ
10.ジ:D(Q)KQX|X=K
11.カ:D(6)%
9手目、私はドローして4。この時点の手札は(A4TTJK)でJを除く5枚が3で割ると1余るカードです。個人的にはカードを3で割った余りによって3つのタイプに分類したとき、どれか1つのタイプに集中しているのはあまり好きではありません。というのもここから3枚出しすることを考えると、同じタイプのカード3枚では必ず3の倍数になってしまい出せないからです。もともとは(A,T,ドローしたカードでできる素数)→KTJ、または(T,T,J,K,ドローしたカードでできる素数)→(A,再度ドローしたカードでできる素数)で上がろうとしていましたがKTJを先に出し、流れたら再度ドローして4枚出しを狙うことにします。今思えばあまりよい戦略ではなかったように思います。というのも、ジャッカルさんの5手目からK,Xが手札にあることがわかっているのでその後ペナルティやドローでJ,Q,Kのどれか1枚でも引いていればKTJに返せると判断できるからです。ジャッカルさん、ドローはQ。これでKQX|X=Kとカウンターすることができました。私はドローしてパス。
11手目終了時の両者の手札 ジ:(7789T)(残5枚) カ:(A46T)(残4枚)

12.ジ:T987
13.カ:D(Q)Q64A
14.ジ:%
ジャッカルさんはT987。Tから降順に4枚並べると素数になります。ジャッカルさんの残り手札は7の1枚です。私は手札4枚でしたが3の倍数なのでドローします。Qを引きQ64Aを出します。残り手札はTの1枚。ジャッカルさんはドローせずにパス。これで私の次のドローがA,3,7,9,K,Xなら素数がつくれて私の勝ち、2,4,5,6,8,T,Qなら素数をつくれない、または1枚出ししても返されてジャッカルさんの勝ち、Jならまだ決まらないという状況になりました。
f:id:graws188390:20181115213256p:plain

15.カ:D(A)TA#
運命のドローの結果、引いてきたのはA。TAを出して私の勝ち。

両者手札が1枚ずつになるまでもつれた勝負ですが、最後は私が勝ちとなりました。

2本目(14:28:06~14:31:25)

初期手札 ジ:(A246689TJQK) カ:(AA6789TTQKX)
ジャッカルさんの初期手札は6が2枚ある他はバラバラで、覚えている素数が見つけやすいといった印象。ジャッカルさんも2468TQAがあることに気がつきます。私の初期手札もAAをJとみなせばダブりはT・1つのみ。覚えている多枚出し*6を見つけましたが後攻*7なので出せるかどうかは先攻のジャッカルさん次第。

1.ジ:2468TQA
2.カ:KAATQTX|X=J
3.ジ:%
ジャッカルさん、フライング気味に2468TQA。前期のMathpower杯でせきゅーんさんが放った「2億」素数です。私がシンキングタイムで見つけたのは7枚出しではなかったため組み直しです。前述のようにAAをJとみなすことで6枚12桁の素数を7枚出しで出すことができそうです。そこでKAATQTX|X=Jを出しカウンター。「2億」の時代を終わらせます。
f:id:graws188390:20181115213323p:plain

4.カ:D(4)98467#
7枚出しカウンターが決まったのはよかったのですが、残り手札は(6789)で3の倍数でした。ドローして4。これで3の倍数ではなくなり、98467と並べ替えて素数となり私の勝ち。2本先取で準々決勝進出。

7枚出しに7枚出しを返した私が2連勝で試合を決めました。

講評

結果としては私の2戦2勝となりましたが、改めてタイムシフトを見ると決して私が(もりしーさんがくじらさんを下したときのように)常に優勢というわけではなかったことが感じられます。1本目はジャッカルさんの1手目2468Jがなかなかいい手で、これに返すかどうかは人や手札によって判断が分かれるところです。たとえば最初にジャッカルさんが2468J→(5枚(勝負手))→(1枚)*8と組んでいた場合、初期手札11枚に絵札(T,J,Q,K,X)が3~4枚あることが多いので勝負手の5枚出しは絵札が2~3枚含まれます。後攻としては

  • (先攻5枚出し)→(後攻5枚出し)→(先攻5枚出し(勝負手))→(後攻5枚出し(勝負手))→(先攻出せず)→(後攻1枚出し)#

という流れが理想のひとつですが、いま先攻(ジャッカルさん)が2468Jを出したので後攻(カステラ)は直後の5枚出しにも絵札を使わなければならず、その結果残りの手札でつくる勝負手が先攻の勝負手に勝てなくなる可能性が高まります。いきなり勝負に出る

  • (先攻5枚出し)→(後攻5枚出し(勝負手))→(先攻出せず)→(後攻6枚出し)#

という流れもありますが、現時点で初期手札11枚を5枚出し勝負手と6枚出し素数に分けるのは至難の業。現在これを難なくこなせる人間はほとんどいません。6枚を3枚・3枚に分けた

  • (先攻5枚出し)→(後攻5枚出し(勝負手))→(先攻出せず)→(後攻3枚出し)→(先攻3枚出し)→(後攻3枚出し)#

については後攻が勝負手を出した後手札に絵札がほとんど残っていないのに対し、先攻は絵札を温存しているので先攻のほうが強い3枚出しを出せる可能性が高いです。
よって1手目の5枚6桁は後攻にとってはどの戦略も難しいかなり厳しい手といえます*9。もちろん、以上の議論は先攻が手札を(5枚)→(5枚)→(1枚)と組んでいることが前提です。たまたま知っている5枚出しがあってそれを出したという場合はこの限りではありません。
2本目は7枚出しにカウンターをした結果、残りが3の倍数となってしまいました。相手は残り4枚なので6枚11桁を7枚出しして、たとえば8TQTKAA→X[IN]→967とするなり、先にドローしてから考えるなり方法はありました。結果としては12桁の素数を出して会場が盛り上がり、ドローして素数がつくれたのでよかったのですが、手堅く勝利をものにしたいのだったならもう少し考えてから行動すべきだったと思います。

試合後に感想戦を行いました。2本目、ジャッカルさんの残り手札は(69JK)。これは3の倍数なのでジャッカルさんは6K→9Jと上がる予定だったそうです。もちろんこれでもよいのですが、たとえば2468TQAの代わりに864Q2TJを出せば残りはA6K9で素数となります。
どんな素数を覚えているのですか? と尋ねられましたので「みんなが覚えていそうな素数、プラスアルファ」と答えました。これについて補足いたします。まず「みんな」とはここでは「私が知っている他の素数大富豪プレーヤー」と考えていただいて差し支えありません。これは単に自分の所属するコミュニティが偏りすぎていて素数大富豪プレーヤーの割合が相対的に高いことに起因した表現です。「みんな」が知っている素数、すなわち知名度が高い素数*10

  • KKQKJ(5枚出し最大)、KKKKTJ(6枚出し最大)など各枚数における最強クラスの素数
  • 76543、68TQJなど並びに規則性がある素数
  • 86T24K(偶数消費)、936QJ(3の倍数消費)など特定のカードを大量消費できる素数
  • 69593(ロックコックさん)、924TA(靴下)など語呂合わせがある素数
  • 65537(フェルマー素数)、KT7A(メルセンヌ素数)など特別な性質をもつ素数
    • とくに8T4X、T9Q6Xなど四つ子素数
  • T2A(第1期Mathpower杯でみうらさんが出した素数(ウイニングプライム))、84Q3A(第2期Mathpower杯でもりしーさんが出した素数)など大会で出た素数

などさまざまな種類があります*11素数大富豪で出せる素数は4枚出し以上になると膨大となりすべてを網羅することは非常に困難です。ゆえにある程度的を絞った覚え方が必要だと思います。そのときの基準のひとつとして知名度があります。素数大富豪プレーヤーたちに知れ渡った素数はそれだけ何かしらの覚える価値があると考えられます。それは必ずしも素数大富豪に強くなることに働かないかもしれませんが、覚えるモチベーションとしては悪くないと思います。
次に「プラスアルファ」ですが、感想戦では最後に出した98467を挙げました。これは1本目の講評でも述べた5枚出し戦略に関係します。98467は5枚5桁の素数ですが、これにカウンターするには5桁ではかなり限られ、6桁以上、すなわち絵札を使わなければなりません。つまり出す側としては1枚も絵札を消費することなく先ほどの2468Jのような効果が期待できるというお得な素数です。絵札を使わない分、勝負手をより強力にすることが可能です。しかも98467は同時に偶数を3枚消費するという点でも価値のある素数です。他にも素数を覚える基準はありますが、それを紹介するのはまたの機会にいたしましょう。

最後に数譜を再掲することで解説を締めくくります。

1本目
ジ:(23456889JKX)
カ:(A255578TJQK)
ジ:2468J
カ:D(3)%
ジ:853
カ:D(9)8Q3
ジ:KX9|X=Q,P(778)
カ:D(T)57[GC]
カ:D(J)5592J
ジ:D(T)%
カ:D(4)KTJ
ジ:D(Q)KQX|X=K
カ:D(6)%
ジ:T987
カ:D(Q)Q64A
ジ:%
カ:D(A)TA#


2本目
ジ:(A246689TJQK)
カ:(AA6789TTQKX)
ジ:2468TQA
カ:KAATQTX|X=J
ジ:%
カ:D(4)98467#

次回はonewanさん対白くまさんの試合を解説いたします。

*1:当時のツイート(素数大富豪をプレーしていた):

twitter.com

*2:2回戦-2 せきゅーん-キグロgraws188390.hatenablog.com

*3:時間はタイムシフトにおけるこの勝負の放送時間です。https://live2.nicovideo.jp/watch/lv314662902

*4:このテクニックは「グロタンチェンジ」と呼ばれています。

*5:多枚出し対策として6桁の四つ子素数を覚えて大会に臨みました。

*6:どんな素数だったかは今は伏せておこうと思います。

*7:Mathpower杯では直前の勝負の敗者が次の勝負の先攻となる。一方、せきゅーん杯は先攻を交互にもつ。

*8:たとえば2468J→893XK|X=J→5。893JKは「ヤクザJK」。

*9:いずれ11枚を5枚出し素数・6枚出し素数臨機応変に分けられるようになればこの限りではありませんが……

*10:といいながらもせっかくなので類似の、少しマイナーなものも混ぜてあります。ここに挙げた素数知名度が上がりますように。

*11:ここに挙げた分類は重複することがあります。たとえば2468TQAは規則性あり・偶数消費・大会で出た素数です。

【第3期Mathpower杯】2回戦-2 せきゅーん-キグロ

2回戦2試合目はせきゅーんさんとキグロさんというなかなかの好カード。キグロさんは日曜数学会*1の幹事。Mathpower杯では第1期・第2期ともにベスト4、せきゅーん杯でもベスト4の実力者。さらにこの記事の執筆時点(2018年11月)でおそらく唯一であろう素数大富豪小説「QK -1213-」*2の作者でもあります。せきゅーんさんは素数大富豪の考案者。1回戦でコロちゃんぬさんを破り2回戦進出です。じゃんけんにより1本目の先攻はキグロさんになりました。

1本目(13:44:53~13:49:43*3 )

初期手札 キ:(234557888JX) せ:(AA2799TTJJQ)
キグロさんの初期手札は絵札がJ,Xの2枚しかなく、しかも偶数が多め。キグロさんはこの11枚を3748828X55Jと並べています。一方のせきゅーんさんは絵札は5枚あるもののKがないのが辛いところ。とくに4枚出しに弱く、出せる最大は2QTJ(4枚出し35番目*4 )です。ドローに恵まれれば、絵札大量消費で親をとってラマヌジャン革命を仕掛ける奇襲ができる可能性がありますが……。

1.キ:48828X5=5^J|X=Q
2.せ:%
奇襲を仕掛けたのはキグロさんでした。解説のみうらさんも「キグロさんの札の順番が気になりますね」と気にしていらっしゃいましたが、その不可思議な並べ方はなんと合成数出し、48828X5=5^J|X=Q! これには壇上の素数判定員、解説も含めみな呆然。合成数出し成功と判定されたときには会場から自然と拍手が起きました。「知ってるのも凄いですけど気付くのももっと凄い」とみうらさんがコメントしています。合成数出しに気付かなかったために負けたという勝負も実際ありますので、「気付く」ことには覚えることとは違う難しさがあるといえます。せきゅーんさんはこの7枚出しにカウンターを試みるも時間切れにより強制パス。ちなみにせきゅーんさんが出そうとしていたのはJ9JTTQAでしたが、実はこれは素数。あと1秒、間に合いませんでした。
f:id:graws188390:20181107200301p:plain

3.キ:37#
キグロさんが残りの2枚を37として出して上がり。37は最小の非正則素数です。この勝負の12時間ほど前のMathpowerの企画「インテジャーズ イン 仮面ライダービルド」で紹介されていました。非正則素数について、詳しくはtsujimotterさんのこちらの記事を参照。
tsujimotter.hatenablog.com

1本目から大技が飛び出しました。2本目以降もハイレベルな勝負の予感……

2本目(13:50:35~14:06:04)

初期手札 せ:(AA289TTJJXX) キ:(A344889TJQK)
せきゅーんさんの初期手札にジョーカーが2枚あります。Q,Kがないのが惜しいですがT,Jが各2枚とかなり強い手札。なお初期手札11枚にジョーカーが2枚含まれる確率は約3.8%。2人のどちらかがジョーカーを2枚持っている確率はこの倍の約7.7%でおよそ13回に1回起こります*5。キグロさんは絵札がT,J,Q,K各1枚ずつと悪くはないですが、せきゅーんさんの優勢は変わりなし。

1.せ:D(2)J
2.キ:%
1手目、せきゅーんさんがドローしたのは2。時間ギリギリでJの1枚出し。直前の負けを引きずっているのか、この1枚出しに自信がなさそうです。キグロさんはノータイムでパスを選択。

3.せ:D(7)A729[RR]
4.キ:[R]D(9)A489
5.せ:[R]D(3)AX83|X=4
6.キ:[R]D(K)%
せきゅーんさんは再度ドロー、7を引きこれでラマヌジャン革命の4枚が揃いました。さっそくA729[RR]。みうらさんも解説していますが、もしこれを最初から狙っていたとすると1手目のJ・1枚出しは革命後に邪魔となる絵札を革命前に消費してしまおうという意図が考えられ、1本目の敗北に動揺していたわけではなさそうです。対するキグロさんはA483を用意してからドロー、9を引きます。A48Xはラマヌジャン革命A729にカウンターすることのできる唯一の四つ子素数です。A483、A489どちらも素数ですがキグロさんはA489を出します。せきゅーんさん、ドローは3。先ほどキグロさんが出そうとしていたAX83|X=4で再カウンター。これにはキグロさんもしまったという身振り。ちなみにA283も素数で、こちらならジョーカーを消費せずに出すことができました。キグロさんはドローするもKでパス。
6手目終了時の両者の手札 せ:(2TTJX)(残5枚) キ:(3489TJQKK)(残9枚)

7.せ:[R]D(6)J
8.キ:[R]D(6)8,P(2)
せきゅーんさんにはこの時点で2JTTX|X=Kや2→XTTJ|X=4での上がりがあります。ところがせきゅーんさんはドローして6。1手目同様、時間いっぱいまで使ってのJ・1枚出し。キグロさんは絵札5枚と革命時ではかなり苦しい手札。ドローはせきゅーんさん同様6で状況を打開できるカードではありません。8を出して1枚ですがペナルティを受けることを選びます。手に入れたのは2、革命時ではかなり強いカードです。ちなみに合成数出しを故意に間違えれば素因数場に出したカードの分も山札から引かなくてはいけないため場が1枚出しの場合でも大量のカードを引くことが可能です。今大会の放送試合では誰も合成数出し失敗を記録していませんでしたが、合成数出し失敗時の「若本ボイス」はあったそうです。

9.せ:[R]D(6)6T6TX|X=7,P(A79QK)
9手目のせきゅーんさんのドローはまたしても6。6T6TXを出しますがジョーカーを7と宣言。これは3の倍数(6106107=3*7*290767)なので素数でないことは簡単にチェックできます*6。ちなみに6T6TXはXが何であっても素数になりません(66TTX|X=3,T6T6X|X=9,T66TX|X=Jなどで素数)。このペナルティで両者手札が11枚に逆戻り。
9手目終了時の両者の手札 せ:(A26679TTQKX)(残11枚) キ:(234689TJQKK)(残11枚)

10.キ:[R]KTQJ
11.せ:[R]D(3)A729[RR]
12.キ:D(2)3469
13.せ:D(3)66T3
14.キ:822K,P(4568)
せきゅーんさんがペナルティを受けたことでキグロさんに親がまわってきました。制限時間の最後まで手札を並べ替え、出したのはKTQJ。4枚出しでは3番目に大きな素数ですが革命中なので3番目に弱い。それでもキグロさんは絵札の消費を優先しました。手札は3469、82Kに分かれていますが(2,8,K)は詰んでるセットです。せきゅーんさん、先ほどのペナルティの結果手札にA,7,9が加わり再びラマヌジャン革命が出せる状態になっていました。ドローの後、A729[RR]。この勝負2回目のラマヌジャン革命により場が平常に戻ります。キグロさんが絵札を大量消費した直後なのでこれは最高のタイミングでの革命です。キグロさんは2をドローして、当初の勝負手3469を出します。346Xは四つ子で、しばしば「三四郎」と呼ばれています。3469には「3-Sylow群」*7という語呂合わせもあるようです。せきゅーんさんのドローは3。66T3を出し、素数。この判定にせきゅーんさんは安堵の表情。どうやら66T3が素数かどうか知らなかったらしく、「出会い」だったようです。ちなみに66TXはX=3,7,9で素数になる三つ子です。14手目、キグロさんは822Kを出します。これが素数であればキグロさんの上がりとなりますが、残念ながら合成数(82213=19*4327)。
f:id:graws188390:20181107200323p:plain

15.せ:KQX|X=K
16.キ:%
せきゅーんさんの残り手札は(3TQKX)、革命が2回起き場が平常なので、この手札ならどうとでも勝てます*8。せきゅーんさんはここからT3を残しKQX|X=K。3枚出しで2番目に大きな素数です。キグロさんはいったんは山札に手をかけるものの諦めてパス。

17.せ:T3#
せきゅーんさんがT3で上がり。1-1のタイとなりました。

2本目は2度のラマヌジャン革命でキグロさんを翻弄したせきゅーんさんが勝利を収めました。試合は3本目に突入します。

3本目(14:07:02~14:13:53)

初期手札 キ:(A355678JJKK) せ:(233456799QQ)
キグロさんは初期手札に3枚出し最大素数KKJがあり、これを勝負手にするのがよさそう。キグロさんもKKJの存在に気づき、手札右側に寄せます。せきゅーんさんの初期手札は絵札がQ・2枚のみとあまり嬉しくない構成。両者にグロタンカットのチャンスがあります。

1.キ:D(5)6A
2.せ:D(Q)73
3.キ:8J
4.せ:D(A)QQ,P(4T)
シンキングタイムが終わっても手札の並べ替えを続けるキグロさん。どうやら手札を組むのに苦戦している様子。ドローをし、時間切れ直前で6Aを出します。せきゅーんさん、ドローしますがQ、これで手札のQは3枚。2枚出しにおいてQがつく素数はQ7とQKしかないのでQはかなり厄介です。キグロさんは8Jを返します。残りの手札は557、53、KKJに分かれています。せきゅーんさんはドローしますが、返せるカードがなくQQでカマトト。
4手目終了時の両者の手札 キ:(35557JKK)(残8枚) せ:(A23445699TQQQ)(残13枚)

5.キ:557
6.せ:D(T)593
7.キ:KKJ
8.せ:%
先ほどまでに手札を組み切ったキグロさん、557を出します。せきゅーんさんの出した593に対しては3枚出し最大素数KKJ。これを見てせきゅーんさんはパス。事実上の投了です。

9.キ:53#
キグロさんが53を出して上がり。準々決勝進出となります。
f:id:graws188390:20181107200344p:plain

3本目は初期手札にKKJがあったキグロさんが勝負を優位に進め勝利しました。

講評

素数大富豪考案者vsベテランプレーヤーという対戦でしたが、どの勝負も白熱した展開となり見応えがありました。1本目の合成数出しは先述の「QK -1213-」の第45話を彷彿させるものでした*9。そのエピソードを超えるような勝負をキグロさん自身が実現させました。しかも5^11はMathpower杯直前に投稿された第60話に登場する合成数。キグロさんにとっては記憶に新しい合成数だったのではないでしょうか。ゆぅくりっどさんの以下の記事でも紹介されているロマン溢れる合成数です。
akatanana-818ubugqm.hatenablog.com
2本目はラマヌジャン革命を効果的に使ったせきゅーんさんの戦略勝ち。「再革命」はほとんど例がなく、私が目にしたのはこれが初めてだと思います。最初の革命後のA489→AX83|X=4という連続カウンターも見事でした。
3本目は初期手札の良し悪しが勝敗を分けました。1手目で手札を組み切れなかったキグロさんが苦し紛れに出した6Aは手札にQK,TK,9Jのないキグロさんからするとあまりよくない手でしたが、せきゅーんさんの手札がよくなかったことに救われた恰好になりました。ちなみに、キグロさんの初期手札からの組み方のひとつとして

  • 653→KKJ→57[GC]→8AJ

がありました。

数譜でもう一度この試合を振り返りましょう。

1本目
キ:(234557888JX)
せ:(AA2799TTJJQ)
キ:48828X5=5^J|X=Q
せ:%
キ:37#


2本目
せ:(AA289TTJJXX)
キ:(A344889TJQK)
せ:D(2)J
キ:%
せ:D(7)A729[RR]
キ:[R]D(9)A489
せ:[R]D(3)AX83|X=4
キ:[R]D(K)%
せ:[R]D(6)J
キ:[R]D(6)8,P(2)
せ:[R]D(6)6T6TX|X=7,P(A79QK)
キ:[R]KTQJ
せ:[R]D(3)A729[RR]
キ:D(2)3469
せ:D(3)66T3
キ:822K,P(4568)
せ:KQX|X=K
キ:%
せ:T3#


3本目
キ:(A355678JJKK)
せ:(233456799QQ)
キ:D(5)6A
せ:D(Q)73
キ:8J
せ:D(A)QQ,P(4T)
キ:557
せ:D(T)593
キ:KKJ
せ:%
キ:53#

次回は私・カステラが戦います。相手はジャッカルさんです。

*1:5分間で数学を語るイベント(twitterの自己紹介より)。公式twitter:@nichimath

*2:小説投稿サイト「カクヨム」にて連載中。kakuyomu.jp

*3:時間はタイムシフトにおけるこの勝負の放送時間です。https://live2.nicovideo.jp/watch/lv314662902

*4:上位互換のみ。

*5:初期手札でプレーヤー2人のどちらかがジョーカーを2枚持っているという事象は第3期Mathpower杯では放送された勝負42回に対し3回起こっており確率による想定に近い値でした。

*6:各位の和が3の倍数であればもとの数も3の倍数。

*7:数学の、とくに有限群の理論において「Sylowの定理」と呼ばれる重要な定理があります。有限群G素数pに対し、その極大であるようなp-部分群(位数がpの冪であるような部分群)をGのSylowp-部分群というのですが、Sylowの定理はSylowp-部分群についての情報を与える定理です。

*8:実戦の進行はKQX|X=K→T3でしたが必勝のルートだけでも3QXTK|X=Qや3→X[IN]→QTK(もう1枚のジョーカーはすでに流れていることに注意)があります。

*9:「何てこっちゃ?」って方はリンクから読んでください。ここではネタバレはいたしません。

【第3期Mathpower杯】2回戦-1 もりしー-くじら

放送された試合以外にホールでは1回戦の他の試合が進行しています。
f:id:graws188390:20181031134507p:plain
壇上では2回戦に入ります。まずはもりしーさんとくじらさんの対決です。もりしーさんは前期Mathpower杯の優勝者。昨年は無名のプレーヤーでしたが今年はディフェンディングチャンピオンとして優勝候補の筆頭です。対するくじらさんは1回戦タカタ先生によって能力が「開放」*1。もりしーさんを相手にどんな戦いを見せてくれるのか。じゃんけんにより1本目の先攻はもりしーさんです。なおこの勝負から素数判定員が変わっています。

1本目(13:31:00~13:34:56*2 )

初期手札 も:(A233577TJKX) く:(23445899JQX)
もりしーさんの初期手札はジョーカーを含む絵札4枚にグロタンカットがあります。偶数も少なめなので理想的といってよいでしょう。3J→KT=2*5*XA|X=K→773という2枚出し合成数を使った戦略もとれます。一方のくじらさんは絵札がジョーカーを含む3枚ですがKがないので3枚出しだと不利な手札です。というのは、3枚6桁素数(上位互換のみ)はKKJ,KQK,KJJ,KTJ,QTK,JQJ,TJJの7つですが、そのうち上位5つにはKが含まれ、KKJ,KQKにいたってはKが2枚必要となるからです。しかも先攻はもりしーさん。これはかなり厳しい勝負になりそうです。

1.も:T33
2.く:D(7)%
1手目、もりしーさんはノータイムでT33。この3枚出しにくじらさんはドローするものの返せず。ちなみに1033は23571113......102110311033と1033以下の素数を順に並べた数が素数(Smarandache-Wellin素数*3 )だったり、2つの過剰数(自分自身を除く正の約数の和が自分自身より大きい自然数)の和で表せる最小の素数だったりします(1033=945+88)。私の推し素数のひとつです。
f:id:graws188390:20181031134530p:plain

3.も:KXJ|X=K
4.く:D(6)%
続いてもりしーさんが出したのはKXJ|X=K、3枚出し最大素数です。くじらさんは返しようがありません。

5.も:57[GC]
そしてグロタンカットから……

6.も:A27#
A27であっという間にもりしーさんの勝ち。くじらさんは天を仰ぐ。

もりしーさんが初期手札から組み切って難なく勝利。初期手札がよかったこともありますが、相手に流れを一切渡さない勝ち方はまさにチャンピオンです。いいところがなく負けてしまったくじらさん、2本目で巻き返せるか。

2本目(13:36:02~13:42:08)

初期手札 く:(A233359QQKX) も:(245779TJQKK)
くじらさん、絵札がジョーカーを含めて4枚あり悪くない初期手札ですが、3の倍数のカードが多いのが少し気になるところ。手札に偶数しかなくて素数が出せないということはありますが、3の倍数しかなくて出せないというのもたまに起こるので注意したいところ。もりしーさんは絵札5枚にグロタンカットあり。もし先攻だったらKKQTJ→57[GC]→4729でほぼ勝ち確の強い初期手札。

1.く:D(4)59
2.も:QK
3.く:D(7)%
くじらさん、ドローして4。59を出します。多枚出しを仕掛けてくる相手には1・2枚出しでじわじわと追い込むのは有効な作戦のひとつです。対するもりしーさんは少し考え2枚出し最大素数QK。早めに親をとって自分のペースに持ち込むようです。

4.も:947
5.く:QQK,P(456)
親をとったもりしーさんはすぐさま947。残りの手札は257,KTJに分かれます。くじらさんはQQKを出すも合成数(121213=47*2579)。ちなみにQQXはXが何であっても素数になりません。覚えておくとよいかもしれません。
5手目終了時の両者の手札 く:(A233344567QQKX)(残14枚) も:(257TJK)(残6枚)

6.も:257
7.く:QA3
8.も:KTJ#
もりしーさんは手札の3枚出し素数の小さい方、257を出します。くじらさん、もりしーさんのKTJよりも大きいKQX|X=Kが手札にありましたが出したのはQA3。もりしーさんが無事KTJを出して勝利。2本先取でもりしーさんが準々決勝進出。
f:id:graws188390:20181031134555p:plain

1本目に続いてもりしーさんがくじらさんを圧倒する結果となりました。さすがチャンピオンといったところです。

講評

2本とももりしーさんの圧勝に終わったわけですが、くじらさんが勝つ方法はあったのでしょうか。1本目は先攻のもりしーさんが初期手札からT33→KXJ|X=K→57[GC]→A27の流れがT33の直後にKKJを返されない限り勝ち*4となる手順なのでほとんど対抗することができません。相手の勝負手がKKJでないことを信じてカマトトする方法もありますが、相手の勝負手がKKJの場合には無駄になってしまいます。
2本目については、初期手札にKQ=2^5*XA|X=4があるので、これを勝負手とすると残り手札は(3339Q)。すべて3の倍数なのでそのあとが続きませんが、最初のドローの4と組み合わせるとQ9=3*43と3に分けることができます。つまり
Q9=3*43→KQ=2^5*XA|X=4→3
でほぼ勝ち確です*5。この手順はMathpower杯終了後最初の数学デー*6で見つけました。

twitter.com


最後にこの試合の数譜です。

1本目
も:(A233577TJKX)
く:(23445899JQX)
も:T33
く:D(7)%
も:KXJ|X=K
く:D(6)%
も:57[GC]
も:A27#


2本目
く:(A233359QQKX)
も:(245779TJQKK)
く:D(4)59
も:QK
く:D(7)%
も:947
く:QQK,P(456)
も:257
く:QA3
も:KTJ#

次回は第1期・第2期ともにベスト4のキグロさんが登場。せきゅーんさんと対戦します。

*1:1回戦終了後のタカタ先生のコメント(タイムシフト13:02:01あたりから)より。

*2:時間はタイムシフトにおけるこの勝負の放送時間です。https://live2.nicovideo.jp/watch/lv314662902

*3:Smarandache-Wellin素数に関するせきゅーんさんのブログ記事。integers.hatenablog.com

*4:KKJの直後にKKQ(=2^4*29*283)またはKKK(=3*7*13^2*37)の合成数出しを返される場合も考えられますがほとんど起きません。

*5:KQ=2^5*XA|X=4→9343Q3ならなおよい。

*6:数学好きまたは数学好きでない人がなんとなく集まる部室みたいなやつ(twitterの自己紹介より)。毎週水曜日にソノリテ(神田)、毎週金曜日にφカフェにて開催。公式twitter: @sugaku_day

【第3期Mathpower杯】1回戦-2 せきゅーん-コロちゃんぬ

第3期Mathpower杯1回戦放送2試合目を解説します。1試合目の解説はこちら。
graws188390.hatenablog.com
graws188390.hatenablog.com

解説ルームに先ほど敗れたタカタ先生が登場。10X,82Xは四つ子だがJはつかないこと、覚えましたよね? 前期は「8のスペシャリスト」、今期は「10のスペシャリスト」として参戦していることから来期は「12のスペシャリスト」? そうこうしているうちに壇上にせきゅーんさんとコロちゃんぬさんが登壇します。せきゅーんさんは素数大富豪プレーヤーなら誰もが知る素数大富豪の生みの親。本人は素数大富豪は強くないとは言いながらも、全プレーヤーの中で素数大富豪歴が長いのがせきゅーんさん。昨年のMathpower杯では2468TQAを出しており、弱いわけがない。対するコロちゃんぬさんは前期に続いてのMathpower杯参戦。1月のせきゅーん杯にも参戦し、予選リーグで私・カステラに勝っています。実力は十分。じゃんけんの結果、1本目の先攻はせきゅーんさんに。

1本目(13:03:48~13:13:28*1 )

初期手札 せ:(A33556699TK) コ:(A24577TJQKX)
せきゅーんさん、絵札が2枚しかなくやや厳しい。ラマヌジャン革命をするにも7が手札にありません。一方のコロちゃんぬさんはT,J,Q,K,Xと各1枚ずつあり強い手札。グロタンカットもあります。

1.せ:D(K)66A
2.コ:5TA
3.せ:D(J)3TK
4.コ:D(T)QTK
5.せ:D(Q)%
1手目、せきゅーんさんは少し考えてドロー。Kを引いてきます。そして66A。初期手札に2枚あった6を消費しての3枚出し。対するコロちゃんぬさんは5TA。こちらも偶数2枚を消費します(5は偶数)。せきゅーんさん、またも絵札(J)をドローして3TK。31013は一の位から読んでも同じになる回文素数です。ちなみに3TKTK(310131013)も回文素数です。コロちゃんぬさんのドローはT。さっそくQTKとして使います。せきゅーんさんは3連続絵札となるQをドローしますが、手持ちのJ,Q,Kでは素数をつくれずパス。
5手目終了時の両者の手札 せ:(35599JQK)(残8枚) コ:(2477JX)(残6枚)
f:id:graws188390:20181030135324p:plain

6.コ:2J
7.せ:9J
8.コ:D(8)%
6手目、コロちゃんぬさんは2Jを出します。もしこれが流れれば747X|X=K,X7|X=5[GC]→47,4X=7*7|X=9などで上がりとなります。しかしせきゅーんさんに返されるとかなり厳しくなりますが、せきゅーんさんに9Jと返されてしまいます。せきゅーんさんは残りの手札を53,59,QKと並べます。8手目、コロちゃんぬさんのドローは8。9Jには返せずパス。
8手目終了時の両者の手札 せ:(3559QK)(残6枚) コ:(4778X)(残5枚)

9.せ:59
10.コ:D(4)8X|X=J
11.せ:QK
12.コ:%
先ほど手札を組んでいたせきゅーんさん、出したのは59。その後、QK→53で上がる作戦。解説のみうらさんは「直前に相手が2枚出しを仕掛けているにもかかわらず自分から2枚出しを仕掛けるというのは相当自信があるんでしょうか」とコメント。相手が親でn枚出しをしたとき、たいてい相手はn枚出しが自分にとって有利と判断して出しているので多くの場合n枚出しの強い素数をもっています。なのでそこに自分からn枚出しをするのは普通はあまりいい手とはいえません。今回はコロちゃんぬさんが9Jに対しパスをしたこと、および手札に2枚出し最大素数QKがあることからせきゅーんさんは2枚出しでも自分のほうが有利と判断したのでしょう。コロちゃんぬさんはなんとか8X|X=Jを返します。せきゅーんさんのQKにコロちゃんぬさんはパスするしかありません。

13.せ:53#
せきゅーんさんが残りの手札を出しきり、せきゅーんさんの勝利。

せきゅーんさんが初期手札での劣勢を連続絵札ドローで巻き返し勝利しました。一方のコロちゃんぬさんは序盤の優勢を生かしきれず痛い敗戦となりました。

2本目(13:13:54~13:27:12)

初期手札 コ:(22578TTQQQK) せ:(A344668TJJK)
コロちゃんぬさんは絵札は6枚あるものの奇数が2枚しかない扱いづらい手札。T・2枚、Q・3枚をどう処理するかが問題になりそうです。せきゅーんさんは絵札4枚。解説のもっちょさんが言及しているように初期手札11枚に含まれる絵札(T,J,Q,K,X)の枚数は4枚が一番多く(26.69%)、次いで3枚(25.80%)、5枚(17.43%)、2枚(15.05%)となっています*2。ということでせきゅーんさんの手札は「普通」といえそうです。絵札の枚数で比べるならコロちゃんぬさんが優勢ですが、手札の扱いやすさを考えるとせきゅーんさんが有利。

1.コ:D(5)T=2*5
2.せ:D(A)%
コロちゃんぬさんのドローは5。それと手札の2を手にもち時間いっぱいまで考えてT=2*5。手札の奇数を温存して偶数カードを消費してきました。せきゅーんさんはドローしてパス。手札のJ,Kを出さずに様子を見るようです。

3.コ:D(4)T=2*5
4.せ:D(7)J
5.コ:D(6)%
3手目、コロちゃんぬさんは4をドロー。またもT=2*5で偶数を消費します。せきゅーんさんは先ほどパスした同じ手に今度はJを返します。続くコロちゃんぬさんのドローは6。もともと奇数が少ない手札で3回連続の偶数ドローはかなり苦しい。手札にKを残したままパス。
5手目終了時の両者の手札 コ:(4678QQQK)(残8枚) せ:(AA3446678TJK)(残12枚)

6.せ:D(6)666A
7.コ:D(A)QQQA
8.せ:D(K)%
せきゅーんさんのドローは6、これで手札の6は3枚になります。この3枚を666Aとして消費。コロちゃんぬさんはAをドロー。QQQとだして最後にA! 素数だ! ちなみに1212121は回文素数。なおこれより上の4枚出し回文素数はKJKA(1311131)のみです。それに対してせきゅーんさんは返せるカードはあるもののパスを選択。
f:id:graws188390:20181030135347p:plain

9.コ:D(9)67
10.せ:8J
11.コ:D(8)%
9手目、コロちゃんぬさんのドローは9。いったんは96Kを手札右側に寄せていたものの(487→96Kという出し方がある)、67の2枚出し。せきゅーんさんは8Jで応戦します。コロちゃんぬさんはドローしますが引いてきたのは8。これには解説陣も「う~ん」と唸る。パスせざるを得ません。
11手目終了時の両者の手札 コ:(4889K)(残5枚) せ:(A3447TKK)(残8枚)

12.せ:D(9)94A
13.コ:D(7)%
せきゅーんさんがドローしてきたのは9。いったん首をかしげるも94Aの3枚出し。コロちゃんぬさんは7をドローするもパスを選びます。

14.せ:3TK
15.コ:D(9)%
94Aでパスだったのを受け、再び3枚出しで勝負に出たせきゅーんさん。2回目の3TKです。絵札がKのみのコロちゃんぬさんはこれに返すにはどうしても絵札がほしいところ。しかしドローは9で叶わず。

16.せ:K
17.コ:D(K)%
せきゅーんさんの残り手札は(47K)。合計が3の倍数なので3枚出しはできません。そこで先にKを出し、返されなければ47で上がる作戦。返すにはジョーカーをドローするしかないコロちゃんぬさん。祈りながらドローするも引いたのはK。無念のパス。

18.せ:47#
せきゅーんさんが47を出して勝利。2本先取で2回戦進出。お互いの健闘を称え握手。

講評

3枚出し、4枚出しのラリーが見られ、前の試合からグンとレベルが上がりました。結果は2本ともせきゅーんさんが勝ちましたが、コロちゃんぬさんが勝っていてもおかしくはなかったと思います。
一般に手札の絵札の枚数は多いほうが有利です。というのは、絵札が多い分、大きな素数(n枚2n桁、2n-1桁)がつくれる可能性が高いからです。たとえば1本目の初期手札ではコロちゃんぬさんが優勢でした。せきゅーんさんが66Aを出したあとでも、手札を
T2A→KXJ|X=K→57[GC]→4Q7
と組むことができました*3。手札を組むポイントは、勝負手(この例ではKKJ)のあとにはすぐに上がれるようなカードを残すことです。絵札が多い手札はこのように大きな素数をつくれることが魅力ですが、大きな素数を出して絵札を一気に消費すると途端に手札が弱くなってしまいます。なので、大きな素数はそれで親をとった後にすぐに上がれるような場合に出すのが効果的です。この例だと手札(A24577TJQKX)に3枚出し最大素数KXJ|X=Kとグロタンカット57がありますから
(3枚)→KXJ|X=K→57[GC]→(3枚)
という出し方が考えられます。あとは残りの手札(A247TQ)を空いている箇所に当てはめて素数をつくれば完成です。ここで3枚出し素数をどれだけ知っているかが問われます。

最後にこの試合の数譜を再掲します。

1本目
せ:(A33556699TK)
コ:(A24577TJQKX)
せ:D(K)66A
コ:5TA
せ:D(J)3TK
コ:D(T)QTK
せ:D(Q)%
コ:2J
せ:9J
コ:D(8)%
せ:59
コ:D(4)8X|X=J
せ:QK
コ:%
せ:53#


2本目
コ:(22578TTQQQK)
せ:(A344668TJJK)
コ:D(5)T=2*5
せ:D(A)%
コ:D(4)T=2*5
せ:D(7)J
コ:D(6)%
せ:D(6)666A
コ:D(A)QQQA
せ:D(K)%
コ:D(9)67
せ:8J
コ:D(8)%
せ:D(9)94A
コ:D(7)%
せ:3TK
コ:D(9)%
せ:K
コ:D(K)%
せ:47#

次回から2回戦になります。シードの選手が続々と登場します。2回戦最初の放送試合は前期Mathpower杯・もりしーさんと1回戦でタカタ先生を下したくじらさんの対決です。

*1:時間はタイムシフトにおけるこの勝負の放送時間です。https://live2.nicovideo.jp/watch/lv314662902

*2:数値はもりしーさんの以下の記事から引用。 prm9973.hatenablog.com

*3:実戦では3手目のドローでせきゅーんさんにKKJが揃っていたので、仮にコロちゃんぬさんがこのように手札を組んでいたとしてもその通りに出せない可能性はあります。

【第3期Mathpower杯】1回戦-1 タカタ先生-くじら (2)

前回の続きです。

ここで解説ルームの紹介。解説者は鰺坂もっちょさんとみうらさん。2年前の第1期Mathpower杯の決勝でぶつかった2人が、今期は解説としてMathpower杯を盛り上げていきます。2本目は1本目で敗れたタカタ先生の先攻です。

2本目(12:45:39~13:02:27*1 )

初期手札 タ:(25777889TJJ) く:(2355679TJKK)
1本目は偶数ばかりの手札に悩まされた両者。今回はともに奇数が多め。タカタ先生は絵札は3枚ですがQ,Kがないので少し弱め。くじらさんは絵札4枚。3枚出し最強のKKJや4枚出し2番目のKJTKがあります。くじらさんは256を左側に寄せ、1本目に128を合成数出ししたのと同様に256(=2^8)の合成数出しを狙っているようです。タカタ先生は57を右側に。

1.タ:J
2.く:K
3.タ:D(Q)%
タカタ先生、少々悩んでJの1枚出し。くじらさんがKを出し、タカタ先生はドローしてパス。お互いに絵札を消費。

4.く:57[GC]
ここでくじらさん、今大会初のグロタンカット。若本さんの巻き舌が場内に響き渡ります。

5.く:3
6.タ:J
7.く:K
8.タ:D(X)%
くじらさんの3の1枚出しからJ、Kと両者またも絵札を消費。タカタ先生、Kに勝てるジョーカーをドローするもここではパスを選択。左側にX729と並べラマヌジャン革命を狙っているかのよう。
8手目終了時の両者の手札 タ:(25777889TQX)(残11枚) く:(2569TJ)(残6枚)

9.く:D(3)T9
10.タ:D(6)%
くじらさんのT9に対しタカタ先生またもジョーカーを温存しパス。

11. く:D(A)A3J,P(A3Q)
くじらさん、3枚出しするもA3Jは3の倍数(1311=3*19*23)。なお1311=23*57ですが、57は場に出すときに限り場を流すことができる合成数ですので、合成数出しの素因数としては使えません(使うとペナルティ)。きちんと3,19と出しましょう。

12.タ:D(6)67
13.く:QJ,P(23)
タカタ先生の出した67に対し、くじらさんはQJを出すもこれは7の倍数(1211=7*173)。もっちょさんが言うようにQJを出すのはありがちなミス。1001チェックをすれば1211=1001+210なので7の倍数だとすぐにわかります。

14.タ:D(4)4687,P(68QQ)
タカタ先生、偶数消費を狙い4枚出しをするが4687は合成数(4687=43*109)。ペナルティでかえって偶数が増えることに。偶数部分を逆に並べて8647とすれば素数でした。

15.く:33=3*AA
16.タ:67
17.く:D(9)%
くじらさん、ペナルティで引いたA,3を合成数出しで一気に消費。タカタ先生の67にくじらさんはドローして9。手札左側に並べていた256を295Q(5Q=2^9の合成数出し)に変え、パス。

18.タ:D(5)X729|X=A[RR]
19.く:[R]%
タカタ先生、満を持してラマヌジャン革命。しかし、手札が偶数のみとなる。
f:id:graws188390:20181024135712p:plain
19手目終了時の両者の手札 タ:(4556888TQQQ)(残11枚) く:(22569JQ)(残7枚)

20.タ:[R]D(A)6A
21.く:[R]D(4)%
タカタ先生の6Aに対し、くじらさんはいったんは6Jを出すも、革命中のため手札に戻されます*2。その後パスを選択。

22.タ:[R]D(4)5
23.く:[R]D(K)2
24.タ:[R]D(J)%
タカタ先生、奇数がドローできず5の1枚出し。それにくじらさんは最小素数の2。タカタ先生、奇数(J)をドローしてパス。

25.く:[R]J
26.タ:[R]5
27.く:[R]%
くじらさんはJを出し絵札を消費。タカタ先生は5を返す。くじらさんは2を出さずにパス。
27手目終了時の両者の手札 タ:(44888TJQQQ)(残10枚) く:(24569QK)(残7枚)

28.タ:[R]D(9)89
29.く:[R]D(T)%
自分でラマヌジャン革命を起こしながら手札に絵札5枚を抱えるタカタ先生。9のドローに89でやり過ごす。くじらさん、手札左側の295Qを崩さずにパス。

30.タ:[R]D(A)TA
31.く:[R]D(T)%
タカタ先生、今度はAをドローしてTA。くじらさん、またもドローしてパス。

32.タ:[R]D(K)QK
33.く:[R]5Q=2^9
34.タ:[R]D(8)%
タカタ先生、ドローしてQK。2枚出し最大素数だが今は革命中なので2枚出し最弱素数。これに対し、くじらさんはずっと持っていた5Q=2^9の合成数出し。1本目に決めたQ8(=2^7)の合成数出しもそうですが、2冪の合成数出しは出しやすいのが多いです。とくに8=2^3、64=2^6、256=2^8、T24=2^Tは偶数が多く消費できるので実戦でもよく見られます。

35.く:[R]D(2)TK
36.タ:[R]D(X)%
くじらさん、ドローは2。TKを出し、手札が偶数のみに。タカタ先生、ジョーカーをドローするが使わずにパス。
36手目終了時の両者の手札 タ:(44888JQQX)(残9枚) く:(246T)(残4枚)

37.く:[R]D(4)%
くじらさん、ドローしてここで初期山札がなくなる。手札から出せるものは2しかない中、パスを選択。

38.タ:[R]D(J)QX=J*J|X=A
39.く:[R]D(K)%
タカタ先生、合成数出しで絵札を一挙に3枚消費。くじらさんはKをドローしてTKを出すが、依然革命中なので無効。TKは手札に戻されパス。

40.タ:[R]D(5)5
41.く:[R]D(7)%
手札に4,8,Qしかないタカタ先生。ドローした5をそのまま出す。くじらさんはドローしてパス。

42.タ:[R]D(3)83
43.く:[R]47
44.タ:[R]D(J)%
3をドローしたタカタ先生。83を出す。くじらさんは先ほどドローした7を使って47。続くタカタ先生のドローはJでパス。

45.く:[R]D(K)K
46.タ:[R]D(T)%
くじらさん、ドローしたKをそのまま出す。タカタ先生はドローしてパス。

47.く:[R]D(9)K
48.タ:[R]D(6)%
くじらさん、ドローした9と入れ替えてKを出し絵札を消費。タカタ先生はまたもドローしてパス。
48手目終了時の両者の手札 タ:(44688TJQ)(残8枚) く:(2469T)(残5枚)

49.く:[R]D(7)T9
50.タ:[R]D(3)T3
51.く:[R]D(A)67
52.タ:[R]D(A)6A
53.く:[R]4A
54.タ:[R]D(3)34,P(36)
両者、連続で奇数をドローしながらの2枚出しが続く。54手目、場の4Aにはもう返せないタカタ先生が放った奇手34は偶数。ちなみに手札補充の目的で意図的に偶数を出すことはありえます*3
f:id:graws188390:20181024141014p:plain

55.く:[R]2#
くじらさんが最後の1枚、2を出してゲームセット。2本先取でくじらさんが2回戦進出。

講評

1本目は57手かかりましたがこちらも55手、長期戦となりました。終盤の連続奇数ドローは15手目にくじらさんが出した33=3*AAが回ってきたものです。使いやすい奇数A,3を合計5枚消費するこの合成数出しは、出された時点ではあまりよくない手だと思っていたのですが、これがゲームを終着へと導いた恰好となりました。くじらさん、まさかこれを狙っていた?
2勝負とも制限時間いっぱいの名勝負(迷勝負?)となりましたが、気になる点がありました。それはJの使い方です。Jが出された機会は2勝負で合計15回ありましたが、その内訳は以下の通りです。
J(7回、素数)
TJ(2回、合成数)
QA=J*J(1回、合成数出し)
5J(1回、合成数)
QJ(1回、合成数)
JK(1回、合成数)
A3J(1回、合成数)
82J(1回、合成数)
素数出しとしてはJの1枚出し以外は失敗となっております。これはKのつく2枚出し素数QK(4回)、TK(2回)、6K(1回)がそれぞれ出されているのと比べると大きく違います。原因のひとつとして、Jのつく素数が覚えにくいことが挙げられます。QKは2枚出し最大素数として素数大富豪プレーヤーに広く知れ渡っています。TKも1気圧が1013hPa*4であるとか10Xの四つ子からの類推もできます。一方でJのつく2枚出しは9J、8J、3J、2Jの4つ*5がありますが、知名度は先述のQK、TKに劣ります。ここで、この4つの素数を一挙に覚える方法を2つご紹介いたします。

twitter.com
twitter.com

最後に2本目の数譜を改めて掲載いたします。

タ:(25777889TJJ)
く:(2355679TJKK)
タ:J
く:K
タ:D(Q)%
く:57[GC]
く:3
タ:J
く:K
タ:D(X)%
く:D(3)T9
タ:D(6)%
く:D(A)A3J,P(A3Q)
タ:D(6)67
く:QJ,P(23)
タ:D(4)4687,P(68QQ)
く:33=3*AA
タ:67
く:D(9)%
タ:D(5)X729|X=A[RR]
く:[R]%
タ:[R]D(A)6A
く:[R]D(4)%
タ:[R]D(4)5
く:[R]D(K)2
タ:[R]D(J)%
く:[R]J
タ:[R]5
く:[R]%
タ:[R]D(9)89
く:[R]D(T)%
タ:[R]D(A)TA
く:[R]D(T)%
タ:[R]D(K)QK
く:[R]5Q=2^9
タ:[R]D(8)%
く:[R]D(2)TK
タ:[R]D(X)%
く:[R]D(4)%
タ:[R]D(J)QX=J*J|X=A
く:[R]D(K)%
タ:[R]D(5)5
く:[R]D(7)%
タ:[R]D(3)83
く:[R]47
タ:[R]D(J)%
く:[R]D(K)K
タ:[R]D(T)%
く:[R]D(9)K
タ:[R]D(6)%
く:[R]D(7)T9
タ:[R]D(3)T3
く:[R]D(A)67
タ:[R]D(A)6A
く:[R]4A
タ:[R]D(3)34,P(36)
く:[R]2#

次回は1回戦2試合目・せきゅーんさんとコロちゃんぬさんの対戦を解説します。

追伸
ブログ「初代素数王の備忘録」をお読みいただきありがとうございます。カステラです。
10月19日より密かに始めたブログですが、昨夜から瞬く間に素数大富豪界にその存在が知れ渡っており、こちらとしては大変驚いております。このブログは素数大富豪がもっと強くなりたい人向けに執筆していますが、途中に登場する小ネタは筆者の趣味なので時には読者のみなさんを置き去りにしていくような場合もあるかもしれません。また、よりよい記事にするため、一度公開した記事でも公開してしばらくは表現の若干の修正も含めた加筆修正をする場合があります。以上の点にご留意していただき記事を楽しんでいただけましたら幸いです。

*1:時間はタイムシフトにおけるこの勝負の放送時間です。https://live2.nicovideo.jp/watch/lv314662902

*2:カードの強弱や枚数が守られていない場合は無効とされ、出したカードは手札に戻される。素数判定はしない。

*3:いわゆる「カマトト」と呼ばれるテクニックです。私も今大会では8TT、5TT8862、T8と3回偶数を出しペナルティを受けています。

*4:厳密には1気圧は1013.25hPa。

*5:J3もあるが、上位互換の3Jがあるためここでは除く。

【第3期Mathpower杯】1回戦-1 タカタ先生-くじら (1)

2018年10月7日に数学の祭典「Mathpower」において開催された素数大富豪大会(以降、「第3期Mathpower杯」と記す)の、ニコニコ動画で中継された試合を解説していきます。

壇上にはMathpower総合司会のタカタ先生とキグロさん。キグロさんから素数大富豪のルール説明の後、タカタ先生から今回のトーナメントの説明。放送では概要のみであったが、詳細を述べると

  • 参加者24人によるノックアウト方式。1試合2本(準々決勝以降は3本)先取で勝利。
  • 1本目の先攻は試合前に行われるじゃんけんの勝者。2本目以降は直前の敗者が先攻。
  • ルールは公式ルールに同じ。枚数制限なし、上がりの制限なし*1、手札上限なし*2、流れたカードは流れた順に山札になる(が、ルール通りに運用されていない勝負がいくつかある)。
  • シンキングタイム1分、1手1分(時間切れは強制パス)。
  • 1本あたりの制限時間は15分。15分が経過した時点で勝敗がついていない場合は勝負を中断、お互い手札のカードすべてを使って1つの数をつくる。素数判定の結果、素数がつくれた方の勝利。両者つくれた場合はより大きな素数がつくれた方の勝利。両者つくれなかった場合は手札の枚数の少ない方の勝利*3

そして前回に引き続き素数判定の声は若本規夫さん。昨年よりもバリエーションが増えている。壇上での使用トランプはバイスクルのガーディアン。

1回戦最初の放送はタカタ先生とくじらさんというカード。タカタ先生は第1期・第2期に続いての参加ですが、過去2回はいずれも1回戦で敗退。今回は秘策を持ち込んでいるらしい。くじらさんはMathpowerの「ミスター耐久企画」。今回もMathpower開始から円周率計算に挑戦中。計算力がプレーに生かせるかどうか。ちなみに大会における手回し計算機の使用は禁止です。この試合で勝った方が前回優勝者・もりしーさんとの対戦に駒を進める。じゃんけんの結果、1本目の先攻はくじらさん。

1本目(12:29:31~12:44:56*4 )

初期手札 く:(345669TJQKX) タ:(2245568TJQK)
くじらさん、T,J,Q,K,X各1枚ずつありかなり強い手札。実は

  • T49→KXJ|X=K→665Q3
  • 64T9→KJQX|X=J→653
  • 96643→KXQTJ|X=K→5

のように3枚出し・4枚出し・5枚出しのいずれでもほぼ勝ち確定のルートがとれます(KKJは3枚出し最大素数、KJQJは4枚出し最大素数、KKQTJは5枚出し2番目に大きな素数)。
一方のタカタ先生、T,J,Q,K各1枚ずつあるが、他のカードがすべて偶数(5は偶数)であるところが厳しい。よく見ると2,4,6,8,T,QがあるのでもしAを引いてきたなら2468TQA(昨年のMathpower杯でせきゅーんさんが出した素数)が狙えます。

1.く:43
2.タ:TJ,P(JQ)
1手目、くじらさんほぼノータイムで43。手札にQK(2枚出し最大素数)があるので2枚出しは悪くない。2手目、「10のスペシャリスト」と豪語していたタカタ先生、自信をもってTJ。しかしこれは3の倍数(1011=3*337)。10Xは四つ子でしかもX=Kでも素数になるのですが、X=Jではこのように3の倍数です。ちなみに末尾にA,3,7,9,J,Kをそれぞれつけてそれらがすべて素数になるような数は存在しません。とくに四つ子の共通部分にJをつけると3の倍数です。これについては、キグロさんの以下の記事に詳しく載っています。ch.nicovideo.jp

3.く:T59,P(A8K)
3手目、くじらさんはT59。しかしこれも先ほどと同様3の倍数(1059=3*353)。早くも泥試合の予感。
3手目終了時の両者の手札 く:(A56689TJQKKX)(残12枚) タ:(2245568TJJQQK)(残13枚)

4.タ:D(9)T9
5.く:QK
6.タ:D(5)%
タカタ先生T9。今度こそ素数。それにくじらさんがQK。タカタ先生はドローしてパス。

7.く:TA
8.タ:QK
9.く:%
くじらさん、「10のスペシャリスト」に対しTAを放つ。それに「10のスペシャリスト」はQKで応戦。
9手目終了時の両者の手札 く:(56689JKX)(残8枚) タ:(22455568JJQ)(残11枚)

10.タ:82J,P(6TT)
タカタ先生82J。82Xは四つ子素数(ハニー素数)だと知っていたはものの、Jをつけたら3の倍数になってしまいます(8211=3*7*17*23)。このことについては2手目ですでにコメントしました。

11.く:JK,P(33)
JKは3の倍数(1113=3*7*53)。なおJKの素因数分解には「みなこさんはJK」という語呂合わせがあります。

12.タ:2
13.く:3
14.タ:5
15.く:J
16.タ:D(8)%
タカタ先生、泥試合を案じて「シンプルに」と2の1枚出し。その後テンポよく素数が出されていきます。くじらさんのJに対し、Kをもっていないタカタ先生はドローしてパス。
16手目終了時の両者の手札 く:(356689KX)(残8枚) タ:(24556688TTJJQ)(残13枚)

17.く:59
18.タ:5J,P(9Q)
くじらさんの59に対しタカタ先生は悩んで5J、しかしこれは素数ではない(511=7*73)。ちなみに511は511=2^9-1メルセンヌ数(2^n-1 (n \in \mathbb{Z}_{>0})の形に表される整数)ですが、「2^n-1素数ならn素数」が成り立ち*5、9が素数でないことからも511が素数でないことがわかります。詳しくはせきゅーんさんの以下の記事。
integers.hatenablog.com


19.く:3
20.タ:5
21.く:D(J)J
22.タ:D(K)K
23.く:%
再び1枚出しの場に。タカタ先生のKに対しくじらさんはジョーカーを温存しパスを選ぶ。

24.タ:829
25.く:%
タカタ先生ついにハニー素数829を出す。くじらさんは再びパス。
25手目終了時の両者の手札 く:(668KX)(残5枚) タ:(45668TTJJQQ)(残11枚)

26.タ:5
27.く:D(7)7
28.タ:J
29.く:D(7)K
30.タ:D(7)%
手札に奇数がなくなってきたタカタ先生、5の1枚出し。お互いドローしながら1枚出しが続き、手番はくじらさんへ。

31.く:67
32.タ:T7
33.く:D(7)%
くじらさんの67に対し、「10のスペシャリスト」はT7を返す。

34.タ:D(8)TJ,P(2X)
手札に奇数がJしかないタカタ先生、ドローするも8は偶数。そして2回目のTJ。3の倍数チェックくらいはやろう。ペナルティでカードを引いた際にジョーカーを手に入れます。
34手目終了時の両者の手札 く:(678X)(残4枚) タ:(246688TJQQX)(残11枚)
f:id:graws188390:20181021180235p:plain

35.く:D(4)7
36.タ:J
37.く:D(2)%
1枚出しで奇数を消費しあい、両者の手札から奇数が消えます。

38.タ:D(3)823
39.く:D(4)%
3をドローしてきたタカタ先生、2回目のハニー素数823を出す。

40.タ:D(9)T9
41:く:%
またも奇数をドローしたタカタ先生、思わず「よし」と声が漏れます。さっそくドローした9を使ってT9を出します。

42.タ:D(A)664A,P(AA4T)
手札の偶数消費を狙ったタカタ先生、1001チェックをして664Aを出すもこれは29の倍数(6641=29*229)。ちなみに864Aなら素数で、864A→QQ6X|X=Kで上がりとなります。QQ6J,QQ6Kは偶数消費の双子素数です。6Q6J,6Q6Kの双子と一緒に覚えておきたい素数
42手目終了時の両者の手札 く:(24468X)(残6枚) タ:(AAA44668TQQX)(残12枚)

43.く:D(Q)%
親が回ってきたはものの手札に奇数がないくじらさん。ドローするもQでパスを選択。

44.タ:4A
45.く:D(3)43
46.タ:6A
47.く:%
ペナルティの結果Aが3枚となったタカタ先生、ノータイムで4A。くじらさん、3をドローしてなんとか43を返す。偶数ばかりの手札に苦しんでいる様子。6Aを出したタカタ先生が再び親となる。

48.タ:4A
49.く:Q8=2^X|X=7
50.タ:D(A)QX|X=K
51.く:D(T)%
タカタ先生の出した4Aに対し、くじらさんが今大会初の合成数出しを決める。お互いにジョーカーを消費し、手番はタカタ先生へ。
51手目終了時の両者の手札 く:(46T)(残3枚) タ:(A68TQ)(残5枚)

52.タ:D(Q)TA
53.く:D(K)TK
54.タ:D(9)%
ドローするものの奇数が引けなかったタカタ先生、TAを出して再び手札の奇数が尽きる。くじらさん、KをドローしてTK。これは素数だ! タカタ先生はドローしてパス。

55.く:D(K)6K
56.タ:D(2)%
くじらさん、またもKをドロー。6Kを出す。タカタ先生、ドローに賭けるも実らず、パス。

57.く:D(3)43#
3連続で奇数をドローしてきたくじらさんが43を出して勝利。

講評

いやー長かった。途中2人の手札から奇数がなくなったときはどうなるかと思いましたがなんとか制限時間内に終わりました。実は偶数よりも奇数のほうが場に出やすいので2
周目の山札*6には奇数が多くなるため案外どうにかなったりするものです。
では今の数譜をまとめて見てみましょう。

く:(345669TJQKX)
タ:(2245568TJQK)
く:43
タ:TJ,P(JQ)
く:T59,P(A8K)
タ:D(9)T9
く:QK
タ:D(5)%
く:TA
タ:QK
く:%
タ:82J,P(6TT)
く:JK,P(33)
タ:2
く:3
タ:5
く:J
タ:D(8)%
く:59
タ:5J,P(9Q)
く:3
タ:5
く:D(J)J
タ:D(K)K
く:%
タ:829
く:%
タ:5
く:D(7)7
タ:J
く:D(7)K
タ:D(7)%
く:67
タ:T7
く:D(7)%
タ:D(8)TJ,P(2X)
く:D(4)7
タ:J
く:D(2)%
タ:D(3)823
く:D(4)%
タ:D(9)T9
く:%
タ:D(A)664A,P(AA4T)
く:D(Q)%
タ:4A
く:D(3)43
タ:6A
く:%
タ:4A
く:Q8=2^X|X=7
タ:D(A)QX|X=K
く:D(T)%
タ:D(Q)TA
く:D(K)TK
タ:D(9)%
く:D(K)6K
タ:D(2)%
く:D(3)43#

次回はこの試合の2本目です。この勝負で相手の実力がわかった2人。くじらさんがストレートで2回戦に進むのか、タカタ先生が巻き返すのか。はたして……

*1:グロタンカット・ラマヌジャン革命・単独ジョーカーで上がってよい。

*2:せきゅーん杯では手札が20枚以上になると失格となるルールがあった。

*3:ところで、ここで同数の場合はどうするのでしょう。実際に起こったことがないので存じ上げません。

*4:時間はタイムシフトにおけるこの勝負の放送時間です。https://live2.nicovideo.jp/watch/lv314662902

*5:逆は成り立ちません。たとえば.11は素数ですが2^{11}-1=2047=23 \times 89

*6:この勝負では42手目にペナルティが発生した時点で初期山札は2枚となっており、それ以降の山札から2周目に入ります。

素数大富豪用語集

素数大富豪に関する用語と、その簡単な説明をした用語集です。
素数大富豪の用語は「山札」「手札」「ドロー」など他のトランプゲームのものを流用したものが多いですが、中には素数大富豪独自の用語や、一般に通用しているのとは別の意味をもつ用語も存在します。ここではそのような多少注意を要する用語を中心に五十音順に紹介いたします。

主にフランスで活躍した、ドイツ出身のユダヤ系フランス人の数学者(1928年3月28日~2014年11月13日)。数論や代数幾何学において多大な業績を残した20世紀を代表する数学者の1人である*1が、素数大富豪をプレーするには「57は素数の人」の認識で十分である

  • 1

素数でも合成数でもない唯一の正整数。ルール上(強弱を守っていれば)1を場に出すことは可能だが出した際には必ずペナルティとなる。素因数場における素因数や指数として1を出すことはできない。

  • ウイニングプライム

勝負が決した際に最後に出された素数のこと。優勝素数ともいう。

素数大富豪において出すことのできない素数。最小は40009。

  • 絵札

一般にはジャック、クイーン、キングのことを指すが、素数大富豪においては10も絵札に含めることが多い。ジョーカーを含めることもある。

  • エマープ

一の位から読むと別の素数になるような素数。37と73など。

場にカードがない状態で手番をもつプレーヤーのこと。場に出す枚数を決められるので有利。素数大富豪では親をとる、とらせないことが重要視される。

  • カードカウンティング

場に流れたカードなど見えたカードを記憶して相手の手札や山札を推測する戦術。

  • 下位互換

並べ替えてより大きな素数が作れる場合、並べ替え前の小さい方の素数。たとえば4649は6449の下位互換。(←→上位互換)

一の位から読んでも同じ素数になるような素数。31013、1748471など。

ラマヌジャン革命の直後に出せる素数。1729未満の4桁素数が該当する。

  • カマトト

故意にペナルティを受けること。上がりからは遠ざかるが手札を一度に大量に補充することができ、戦略の幅を広げる効果がある。

  • 勘出し

素数である確証がないまま場にカードを出すこと。

  • 奇数

偶数でない整数のこと。一般には2で割り切れない整数を指すが、素数大富豪においては2でも5でも割り切れない整数をいうこともある。

  • 「QK -1213-」

キグロ氏による、小説投稿サイト「カクヨム」で連載中の素数大富豪小説*2。主人公の女子高生が素数大富豪に出会い、素数大富豪を通して成長していく姿を描く。

  • 偶数

一般には2で割り切れる整数のことだが、素数大富豪においては5で割り切れる整数も偶数と呼ぶことがある。

偶数のカードを多く用いる素数素数として出すのに偶数は一の位として使えないため、偶数が使われる素数素数大富豪プレーヤーに好まれる。8623、QQT3、2468TQAなど。

  • (手札を)組む

相手が何を出すかを想定して、その後さらに何を出すべきかを考えるなどして手札を編成すること。

  • グロタンカット

場に57を出すと場が強制的に流されること。大富豪の「8切り」に相当するルール。由来はグロタンディーク素数

  • グロタンチェンジ

場に57を出す前後でドローすることにより手番をもったまま手札を2枚補充するテクニック。

  • グロタンディーク素数

57のこと。数学者グロタンディークが素数についての一般論を講義したとき、具体的な素数による説明を求められたところ、本来は素数でない57を挙げたという逸話に由来する。

場に合成数を出し、素因数場にその素因数分解を与える素数を出す出し方。指数表記が使用可能。

  • 5は偶数

一の位が5である整数は5の倍数のため、偶数と同様に5の倍数かどうかも容易に判定できることを表した表現。

語呂合わせのある素数。443(しじみ)、593(コックさん)、877(バナナ)、4649(よろしく)など。ちなみに4435938774649(しじみコックさんバナナよろしく)も素数

素数に対して語呂合わせを作る人。

  • 3の倍数

3の倍数かどうかは各位の和が3の倍数かどうかで判定できる。

(10n+1,10n+7,100n+11,100n+13)(nは正整数)がすべて素数であるような組。(31,37,311,313),(9181,9187,91811,91813)など。(共通の数)+(A,7,J,K)という形のため素数を一挙に4つ覚えることができ、素数大富豪プレーヤーに重宝される。

  • 指数表記出し

合成数出しにおいて、冪乗を使って素因数分解を表現すること。たとえば場に8を出す場合、素因数場に2、3を出して8=2^3として出せる。おのりん氏考案。

  • 上位互換

並べ替えてより大きな素数が作れる場合、その大きい方の素数。たとえば6449は4649の上位互換。(←→下位互換)

  • ジョーカー

トランプ1組に2枚存在する。ジョーカー単独では13(革命時は2)より強いものとして扱い、場に出すと場が強制的に流れる。他のカードと同時に出すとワイルドカードとして0~13の任意の数の代わりとして扱う。

  • シンキングタイム

カードが配られたあと、ゲームが始まる前に手札を見て作戦を練る時間のこと。時間は1分であることが多い。

  • 数譜

素数大富豪のゲーム経過を記したもの。

  • せきゅーん杯

素数大富豪考案者のせきゅーん氏が主催する素数大富豪大会。優勝者には「素数王」のタイトルが与えられる。

  • 1001チェック

1001=7*11*13であることを利用して1001の倍数を加減することで7,11,13の倍数を判定するテクニック。

  • 全出し

手札すべてを一度に場に出すこと。

  • 素因数場

合成数出しの際に素因数を出す場所。素因数同士には間隔をあけ、冪乗の指数は(通常用いられるように)底の右肩に重ねるのが望ましい。

せきゅーん杯の優勝者に与えられるタイトル。現在の素数王(第1期)はカステラ。

  • 素数大富豪オンライン

オンラインで素数大富豪がプレーできるサイト*3

素数大富豪に関する研究成果を発表する場*4。2018年発足。

icqk3氏が開発した素数大富豪のcpu対戦ができるサイト*5

素数大富豪において出すことのできる素数。ルール上素数は無制限に出せることになっているがトランプの枚数が有限であることからこのような概念がある。

素因数場にカードを出さず場にだけカードを出す出し方。いわゆる普通の出し方。

与えられた正整数が素数かどうかを判定するアプリ。素数大富豪プレーヤーの必需品。

素数が書かれたTシャツ。プレーヤーおよび素数判定員は素数Tシャツを着用してはならないことが公式ルールによって定められている。

出されたカードが正しく出されたものかどうかを判定する人。大会ではプレーヤーと別に設けられるが、プレーヤーが素数判定員を兼任してもよい。

数学の言語を用いて定義された素数大富豪のこと。

  • 詰んでるセット

三重積氏が提唱したカードの組み合わせ*6。A,3,7,9,J,Kのいずれかが含まれていて手札の和が3の倍数にならず、どう並べ替えても素数を作れないもの。(9,Q,K)や(5,8,T,J)など。

  • 詰んデレセット

素数を作れる並べ方が1つしか存在しないカードの組み合わせ。(2,4,5,J)(素数になるのは254Jのみ)など。

  • 出会い系

新しい素数に出会うことを目指して勘出しするプレーヤーのこと。

「b進法」といったときのbのこと。bが変わればカードが表す数も変わる(例: TKはb=10なら1013だがb=2では10101101_{(2)}=173_{(10)}である)。通常はb=10。

トランプの10のこと。「Ten」の頭文字から。

カードを素数として出す場所。素因数場とは本来区別されるべきだが、しばしば混同されて素因数場も含めて場と呼ぶことがある。

鰺坂もっちょ氏が提唱した整数の分類*7。「パッと見で素数にみえちゃう数」のこと。91など。

  • ペナルティ

素数判定員によって出されたカードが正しく出されていなかったと判定されたときに課される。出した手札をすべて戻したうえで山札から出した枚数分引く。

  • 枚数制限

最大何枚出しまで可能かの制限。通常は無制限。

  • Mathpower杯

株式会社すうがくぶんか・和から株式会社・アスキードワンゴ主催の数学の祭典「Mathpower」で開催される素数大富豪大会、およびその大会の優勝者に与えられるタイトル。現在のMathpower杯(第3期)はもりしー氏。

  • (山札を)回す

カマトトを繰り返して山札を減らし、流れたカードを再び山札から引くことを目指す行為。相手のカードカウンティングを妨害するなどの効果がある。

(p,p+2,p+6,p+8)がすべて素数であるような組。(101,103,107,109),(821,823,827,829)など。(5,7,11,13)を除く四つ子素数は(10n+1,10n+3,10n+7,10n+9)の形となり一の位以外は共通のためそこを覚えれば素数を一挙に4つ覚えることができ、素数大富豪プレーヤーに重宝される。

場に1729を出すと強弱が逆転し、小さい素数が強くなるようになること。由来はラマヌジャンのタクシー数。菅原響生氏考案。

カードを等差数列のように並べて最後に奇数をおいてできる素数。4567、8642J、23456789、2468TQAなど。

  • ワンサイドキル

相手に1枚も手札を出させないで勝利すること。

  • ワンターンキル

1ターンで勝利すること。一発上がりともいう。


次回からいよいよMathpower杯の解説です。お楽しみに!